

Environmental Impact Study: Effects of Water Softener on Septic Tank Performance

Mark Unger – WQA Technical Manager

Overview

Background information

WQRF study set up and results

Background Information

Softener and Septic Numbers

85% of US water is considered hard

- US EPA estimates
 - Softener installations at ~10 million
 - Septic systems in 26 million existing homes
 - Septic systems in 40% of new homes

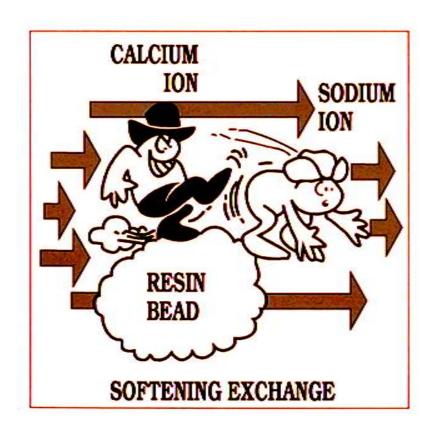
What is a water softener?

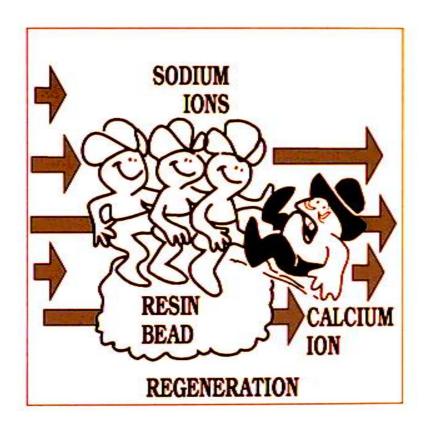
- Cation exchange resin
- Removes hardness ions (Ca⁺⁺, Mg⁺⁺, etc)
- Also removes most metallic ions such as Iron, Lead, Barium, Radium, Mercury, etc
- Whole house installation, regenerates by demand or time

Time Clock vs DIR

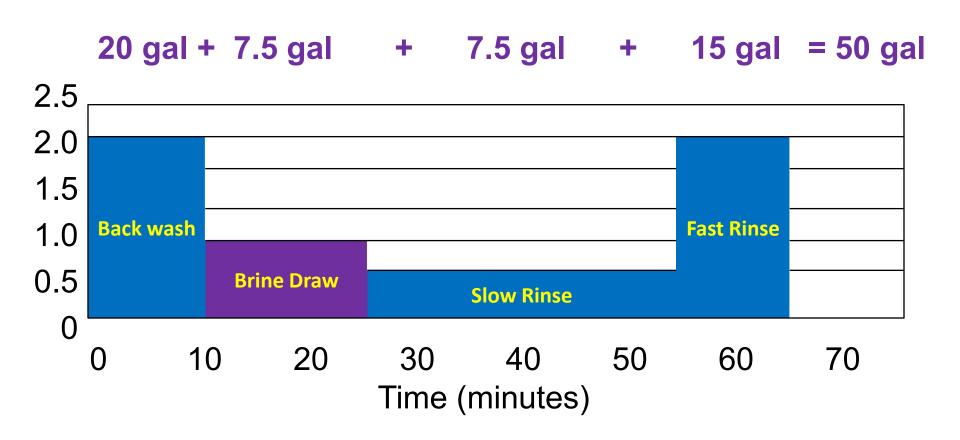
Time Clock – regenerates based on time

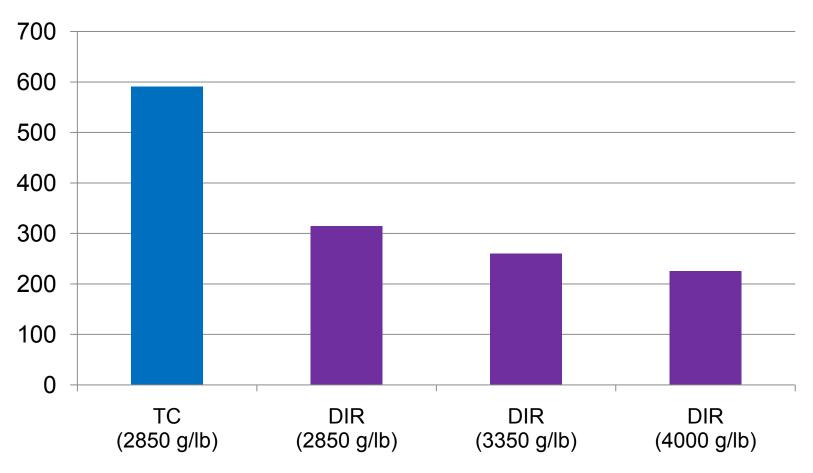
DIR – regenerates based on demand


Regeneration spans 1-2 hrs


Regenerations occurs <1 - 2 times per week

Softener Performance




Regeneration Process

Salt Usage Per Year

History

- 1970's unspecified septic failures noted and softeners being blamed
- Specified failures
 - Poor maintenance
 - Tree root infiltration
 - Unwanted objects in system
 - Hydraulic overloading
 - Driving or parking over system

Early Research

- Septic Tank/Water Softener "Potential Effects of Water Softener Use on Septic Tanks Soil Absorption On-Site Wastewater Systems"
 - University of Wisconsin-Madison
- "The Effect of Home Water Softener Waste Regeneration Brines on Individual Aerobic Wastewater Treatment Plants"
 - NSF International

Results from University of Wisconsin and NSF Studies

- Water softener waste stimulate <u>biological action</u> in anaerobic or aerobic systems
- The <u>volume and flow rate</u> of softener wastes do not cause deleterious problems in anaerobic or aerobic systems.
- Discharge does not interfere with percolation and might improve soil <u>percolation</u>, in fine textured soils.

Did this research resolve the issue?

- Contentions still remained that softener discharges cause septic failures
- Reported issue was lack of defined layers in septic tanks
- Regulators still questioned whether restriction of discharges to septic tanks was necessary

History

~2000 – state bans in CT, OR, and TX

2003 – TX rescinded/revised ban

2009 – WERF water softener workshop

Recent Studies

- Creekwood, NC Study*
 - Investigated salt and solids stratification
 - Showed lower salt levels with DIR softeners
 - Systems functioned well regardless of discharge
 - Did not show variations in stratification

*participants – WQA, CIDWT, NOWRA

Recent Studies

- Novak et. al, VA Tech findings in regard to Industrial Aerobic Activated Sludge systems:
 - An imbalance in the monovalent to divalent (M/D) cation ratio can lead to poor settling
 - This had not been tested in anaerobic systems.
 - Poor settling and lack of clear zones may be due to excessive sodium (M) in relation to calcium (D) and magnesium (D).

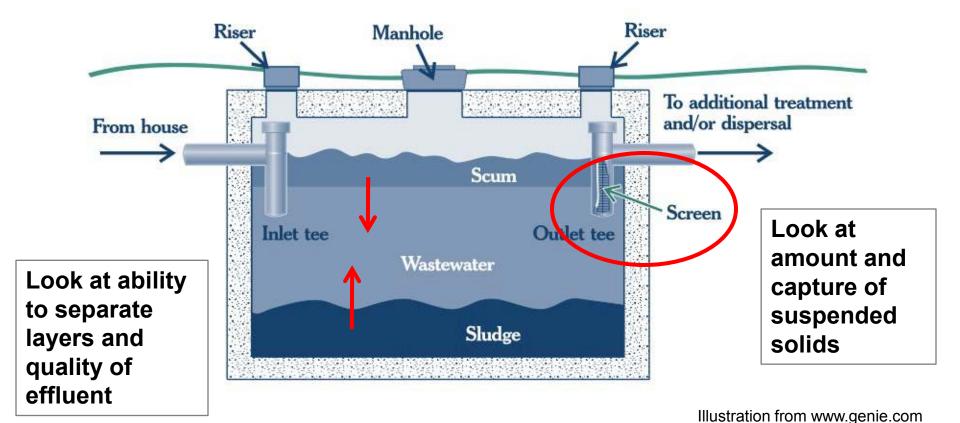
Estimated M/D Ratios

- Novak activated sludge research found that M/D ratio >3 could lead to poor settling
 - $@ 4000 \text{ Grains/lb} \sim 1.8 \text{ (DIR)}$
 - @ 3000 Grains/lb ~ 2.2 (DIR)
 - @ 2000 Grains/lb ~ 3.1
 - $@ 1000 \text{ Grains/lb} \sim 5.5 \text{ (Old TC)}$
 - @ 500 Grains/lb ~ 10 (Old TC)

Data Weaknesses

- The Creekwood study did not address
 - M/D cation ratios
 - Impact of M/D ratio on stratification
 - Effluent filter clogging
- Novak et. al research did not address residential anaerobic applications

WQRF Septic Study Set up and results

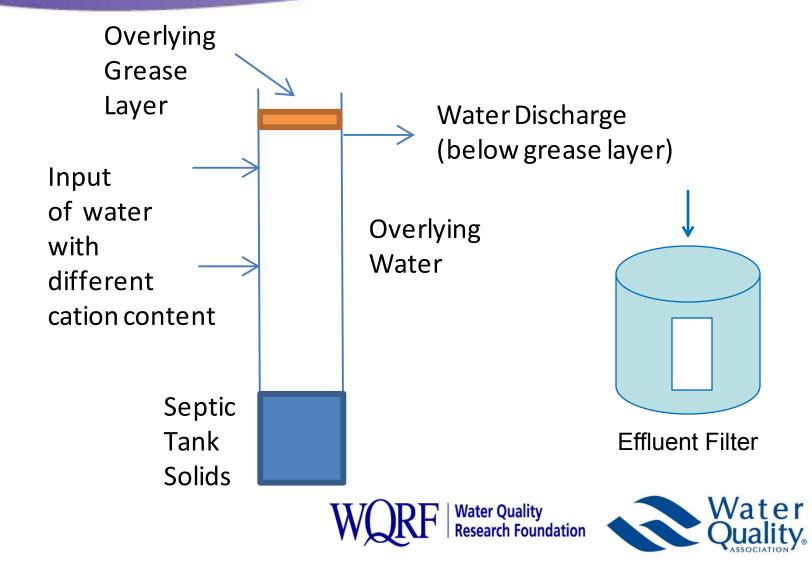

Study Overview

- Researcher Dr. Novak
- Funding WQRF
- Steering Committee WQA, NOWRA, NSF
- Question How does softener discharge effect the M/D cation ratio and septic system performance?

Study Goals

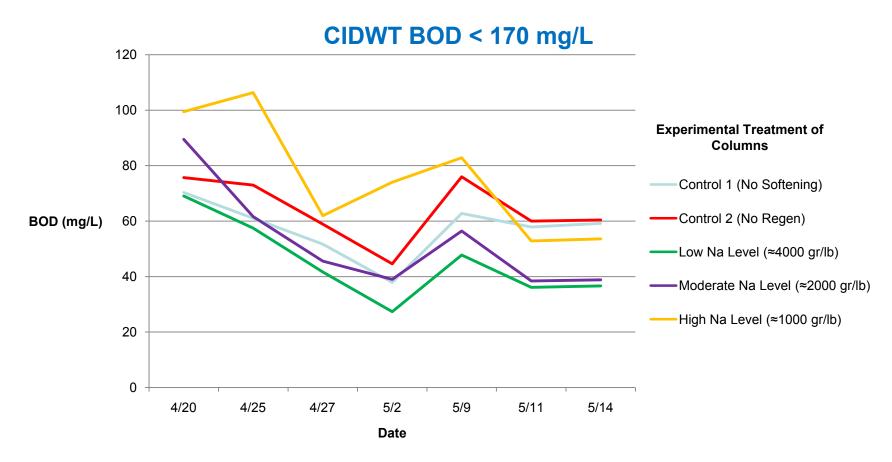
Study Design

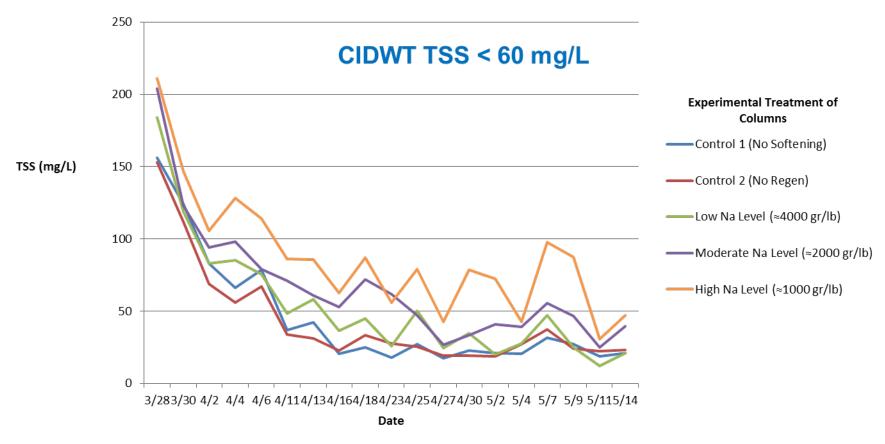
Develop column tests to simulate tanks


Evaluate stratification and water quality

Compare column studies to real world samples

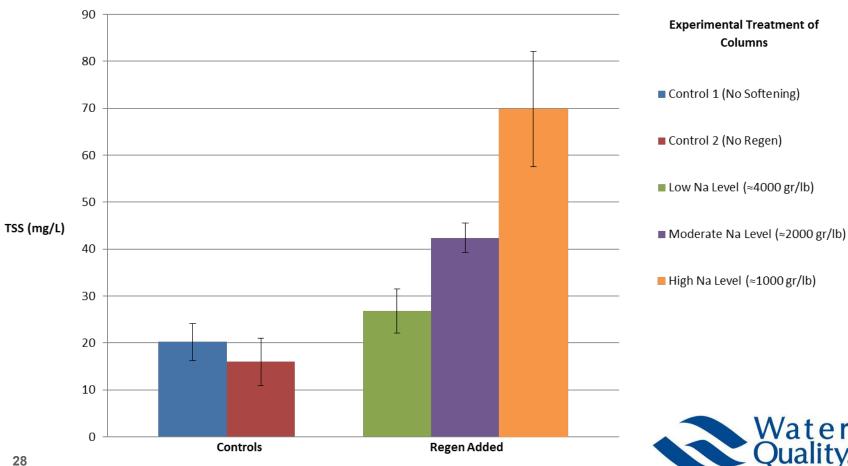
Column Set up


Actual Column Set Up


March 28, 2012: BOD Evaluation



March 28, 2012: TSS Evaluation



June 27, 2012: BOD Evaluation

June 27, 2012: TSS Evaluation

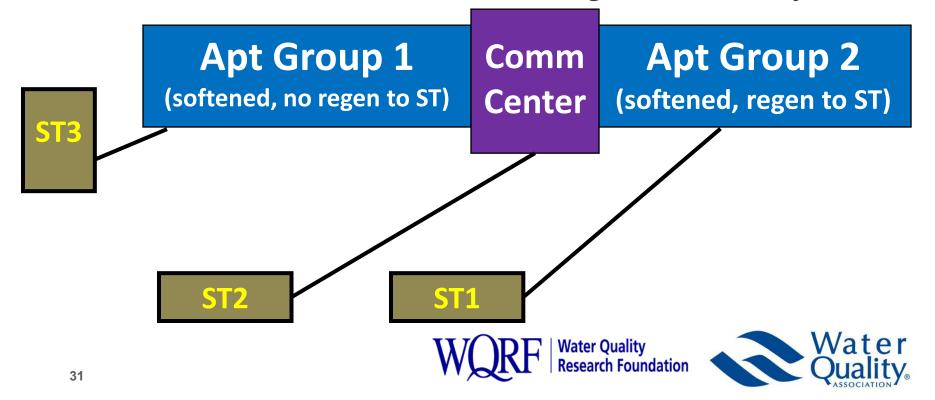
CIDWT TSS < 60 mg/L

Column Study Conclusions

DIR unit must be set at or above 2000 gr/lb

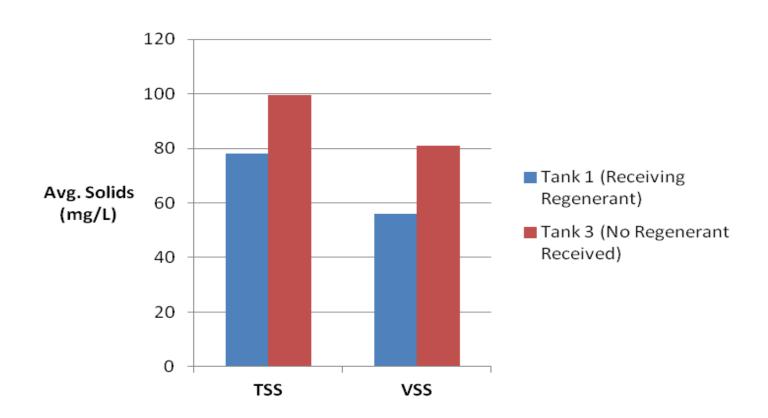
 Higher efficiencies may be required in areas with sodium or other monovalent ions above 200 ppm

Case Studies


- Samples for real world comparisons were collected in North Carolina and New York
- Batch anaerobic digestion studies
 - Sodium impact on degradation rates
 - Determine quality of the overlying water
- Evaluate chloride impact on nitrification
 - If insufficient information in literature

Case Study Design

- Field testing of redirection of discharge
 - The Aquasource Group Inc.
 - All water is softened, discharge to ST1 only


Effluent Filter Evaluations

Effluent filters shown visually loaded

NY Results

Settling Evaluations

Comparison of solids settling in tanks in a NY site:

Tank receiving softener regen water on right

versus

a tank without on left

Case Study Conclusions

- Education in areas with vacation homes may be required (time clock)
- Diversion of discharge may decrease effluent quality

WQA Tools

- Executive summary and significant findings
- Regulatory toolkit
- M/D ratio calculator

Located in the members section at wqa.org

M/D Ratio Calculator

Influent Water Characteristics (Water Analyses Results)

- i. Sodium =
- ii. Potassium =
- iii. Total Water Hardness =

Enter Na+ water analysis result in mg/liter
Enter K+ water analysis result in mg/liter
Enter hardness in gpg gpg

#VALUE! mg/liter

Wastewater Characteristics (Influent Water above plus Average Household Waste Values)

- iv. Sodium =
- v. Potassium =
- vi. Total Monovalent Cations =
- vii. Total Divalent Cations =

mg/liter as CaCO3
mg/liter as CaCO3
mg/liter as CaCO3
mg/liter as CaCO3
r

Water Softening Operational Salt Efficiency

viii. Salt efficiency =

Enter efficiency in gr/lb

grains of water hardness / pound of NaCl salt

M/D Cation Ratio (Calculated for Actual Operational Salt Efficiency)

#VALUE!

A value of 5 or less minimizes potential septic system impacts

Calculator – 4000 gr/lb example

Influent Water Characteristics (Water Analyses Results)

i. Sodium =	17	in mg/liter
ii. Potassium =	8	in mg/liter
iii. Total Water Hardness =	20	gpg

342 mg/liter

Wastewater Characteristics (Influent Water above plus Average Household Waste Values)

iv. Sodium =	156.89 n	ng/liter as CaCO3
v. Potassium =	24.24 n	ng/liter as CaCO3
vi. Total Monovalent Cations =	181.13 n	ng/liter as CaCO3
vii. Total Divalent Cations =	398 n	ng/liter as CaCO3

Water Softening Operational Salt Efficiency

viii. Salt efficiency =

4000 grains of water hardness / pound of NaCl salt

M/D Cation Ratio (Calculated for Actual Operational Salt Efficiency)

1.744045226

A value of 5 or less minimizes potential septic system impacts

M/D ratio is less than 5

Calculator – 1000 gr/lb example

Influent Water Characteristics (Water Analyses Results)

i. Sodium = 17 in mg/liter
ii. Potassium = 8 in mg/liter
iii. Total Water Hardness = 20 gpg

342 mg/liter

Wastewater Characteristics (Influent Water above plus Average Household Waste Values)

- iv. Sodium =
- v. Potassium =
- vi. Total Monovalent Cations =
- vii. Total Divalent Cations =

156.89	mg/liter as CaCO3
24.24	mg/liter as CaCO3
181.13	mg/liter as CaCO3
398	mg/liter as CaCO3

Water Softening Operational Salt Efficiency

viii. Salt efficiency =

1000

rains of water hardness / pound of NaCl salt

M/D Cation Natio (Calculated for Actual Operational Salt Efficiency)

5.610879397

A value of 5 or less minimizes potential septic system impacts

M/D ratio is *greater than* 5

Acknowledgments

Researchers

Dr. John Novak

Patrick Hogan

Greg Holbrook

Miguel Miranda

Support

WaterRight

Canandaigua Lake Watershed

Commission

George Barden

Blacksburg and Christiansburg

Wastewater Treatment Plants

Doug Grove

The Zoeller Company

Doug Goldsmith

Project Steering Committee

DJ Shannahan

Bob Boerner

Steve Richards

Gary Hatch

Frank Brigano

Mark Brotman

Regu Regunathan

Dick Otis

Eric Casey

Matt Byers

Allison Blodig

Jerry Stonebridge

Nancy Deal

Marcia Degen

Tom Bruursema

Thank you!

Questions?